Area-specific resonance of excitatory networks in neocortex: control by outward currents.

نویسندگان

  • Manuel A Castro-Alamancos
  • Yoshie Tawara-Hirata
چکیده

During disinhibition or low [Mg++](o) buffer, 7-14 Hz ( approximately 10 Hz) oscillations are generated by excitatory networks of interconnected pyramidal cells in motor (agranular) cortex but are absent in barrel (granular) cortex. Here we studied if the inability of barrel cortex to produce approximately 10 Hz oscillations during these conditions is because barrel cortex networks lack the necessary cellular mechanisms or, alternatively, because those mechanisms are inhibited by outward currents. The results show that blockers of slowly inactivating voltage-dependent K+ currents unmask approximately 10 Hz oscillations in barrel cortex, and this occurs in unison with the unmasking of intrinsic inward Ca++ currents that are kept suppressed by the outward currents. Moreover, the approximately 10 Hz oscillations unmasked in barrel cortex occur independently in upper and lower layers indicating that the approximately 10 Hz oscillation mechanisms are kept suppressed in multiple networks. The results reveal that the propensity of distinct excitatory networks of neocortex to generate epileptiform oscillatory activities is controlled by outward currents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noradrenergic System Increases Miniature Excitatory Synaptic Currents in the Barrel Cortex

Introduction: Neurons in layer II and III of the somatosensory cortex in rats show high frequency (33 ± 13 Hz) of miniature excitatory postsynaptic currents (mEPSCs) that their rates and amplitudes are independent of sodium channels. There are some changes in these currents in neurodegenerative and psychological disorders. Regarding to well known roles of the neuromodulatory brain systems in...

متن کامل

Effects of Ketamine on Neuronal Spontaneous Excitatory Postsynaptic Currents and Miniature Excitatory Postsynaptic Currents in the Somatosensory Cortex of Rats

Background: Ketamine is a commonly used intravenous anesthetic which produces dissociation anesthesia, analgesia, and amnesia. The mechanism of ketamine-induced synaptic inhibition in high-level cortical areas is still unknown. We aimed to elucidate the effects of different concentrations of ketamine on the glutamatergic synaptic transmission of the neurons in the primary somatosensory cortex b...

متن کامل

Postnatal developmental alterations in the locus coeruleus neuronal fast excitatory postsynaptic currents mediated by ionotropic glutamate receptors of rat

Introduction: In the present work, spontaneous postsynaptic currents were assessed to investigate the postnatal development of excitatory postsynaptic currents in locus coeruleus neurons. Methods: In this study, AMPA and NMDA receptor-mediated spontaneous synaptic currents in the neurons of locus coeruleus were assessed using whole cell voltage-clamp recording during the first three weeks. ...

متن کامل

Neonatal CX26 removal impairs neocortical development and leads to elevated anxiety.

Electrical coupling between excitatory neurons in the neocortex is developmentally regulated. It is initially prominent but eliminated at later developmental stages when chemical synapses emerge. However, it remains largely unclear whether early electrical coupling networks broadly contribute to neocortical circuit formation and animal behavior. Here, we report that neonatal electrical coupling...

متن کامل

EPSP Amplification and the Precision of Spike Timing in Hippocampal Neurons

The temporal precision with which EPSPs initiate action potentials in postsynaptic cells determines how activity spreads in neuronal networks. We found that small EPSPs evoked from just subthreshold potentials initiated firing with short latencies in most CA1 hippocampal inhibitory cells, while action potential timing in pyramidal cells was more variable due to plateau potentials that amplified...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Epilepsia

دوره 48 8  شماره 

صفحات  -

تاریخ انتشار 2007